STRUCTURAL DESIGN OF OPEN CHANNEL
INPUTS

GEOMETRY
Wall thickness | \(t_w\) | \(m\) |
Bottom width | \(b\) | \(m\) |
Thickness of bottom slab | \(t_s\) | \(m\) |
Height of wall | \(H\) | \(m\) |
Side slope | \(S_s\) |
GEOTECHNICAL DATA
Angle of internal friction of foundation material | \(\phi_f\) | \(°\) |
Bearing capacity of foundation material | \(\sigma_f\) | \(kN/m^2\) |
Cohesion of foundation material | \(C_f\) | \(kN/m^2\) |
Angle of internal friction of backfill material | \(\phi_b\) | \(°\) |
Inclination of backfill material | \(i_b\) | \(°\) |
Dry density of backfill material | \(\gamma_d\) | \(kN/m^3\) |
Saturated density of backfill material | \(\gamma_{sat}\) | \(kN/m^3\) |
OTHERS
Flow depth | \(h_w\) | \(m\) |
Density of concrete | \(\gamma_{c}\) | \(kN/m^3\) |
Horizontal seismic coefficient | \(A_h\) | \(-\) |
Backfill depth | \(h_s\) | \(m\) |
Depth of silt in the canal | \(h_{sil}\) | \(m\) |
Ground water depth considered during saturation IN (%) | \(w_w\) | \(%\) |
Uplift considered(%) | \(P_s\) | \(%\) |
CALCULATIONS
Earth pressure at rest
Slope of wall
If \(\theta\) is less than \(\phi_b\) then no soil pressure shall act on the structure otherwise the earth pressure shall be considered.
CALCULATION OF DIMENSION OF THE CHANNEL
Total height of channel, \(H_T\)
Flow top width, \(T_w\)
Top width of silt, \(T_s\)
Inner top width, \(T_i\)
Outer top width, \(T_o\)
Bottom width of slab, \(b_o\)
CENTROID OF THE SECTION
Area of channel, \(A\)
Centroid x
Centroid y
\(A_2=\frac{1}{2}(b_o+T_o)H_T\)
\(\bar{y}=\frac{A_1y_1-A_2y_2}{A_1-A_2}\)
Silt area, \(A_s\)
Flow area, \(A_f\)
LOAD CALCULATION
1. NORMAL CONDITION
Loads | Load intensity(kN/m) | Force (kN) | Moment arm (m) | Resisting moment(kNm) | Overturning moment(kNm) |
---|---|---|---|---|---|
1. Self-weight | \(=\gamma_{c}A\) | \(P_1=F_1\) | \(x_1=\frac{b_o}{2}\) | \(M_1=F_1×x_1\) | - |
2. Weight of water | \(F_2=\gamma_{w}A_f\) | \(P_2=F_2\) | \(x_2=\frac{b_o}{2}\) | \(M_2=F_2×x_2\) | - |
3. Weight of silt | \(F_3=\gamma_{w}A_s\) | \(P_3=F_3\) | \(x_3=\frac{b_o}{2}\) | \(M_3=F_3×x_3\) | - |
4. Hydrostatic force at both sides | \(F_4=\gamma_{w}h_w\) | \(P_4=\frac{1}{2}F_4h_w\) | \(x_4=\frac{h_w}{3}\) | \(M_4=F_4×x_4\) | \(M_4=F_4×x_3\) |
5. Lateral load due to silt | \(F_5=(\gamma_{sat}-\gamma_{w})k_rh_{sil}\) | \(P_5=\frac{1}{2}F_5h_{sil}\) | \(x_5=\frac{h_{sil}}{3}\) | \(M_5=F_5×x_5\) | \(M_5=F_5×x_5\) |
6. Earth pressure at both sides | \(F_6=k_r\gamma_{d}h_s\) | \(P_6=\frac{1}{2}F_4h_s\) | \(x_6=\frac{h_s}{3}\) | \(M_6=F_4×x_6\) | \(M_6=F_4×x_6\) |
7. Hydrostatic pressure at both sides (Water table) | \(F_7=k_r\gamma_{w}h_wt (=0)\) | \(P_7=\frac{1}{2}F_7h_wt\) | \(x_7=\frac{h_wt}{3}\) | \(M_7=F_7×x_7\) | \(M_7=F_7×x_7\) |
8. Seismic load | \(F_8=A_h\gamma_cA\) | \(P_8=F_8\) | \(x_8=\bar{y}\) | - | \(M_8=F_8×x_8\) |
STABILITY ANALYSIS
Factor of safety against sliding
Factor of safety against overturning
Eccentricity
Minimum bearing pressure
Maximum bearing pressure
Load combination | Horizontal force (kN) | Vertical force (kN) | Total resisting moment (kNm) | Total overturning moment (kNm) | Resultant moment (kNm) |
---|---|---|---|---|---|
1.Without seismic load_Empty case | \(H_1=P_6-P_6+P_7-P_7\) | \(V_1=P1\) | \(RM_1=M_1+M_7\) | \(RO_1=M_7\) | \(M_2=RM_1-RO_1\) |
2.Without seismic load_Full case | \(H_2=P_4-P_4+P_5-P_5+P_6-P6+P_7-P_7\) | \(V_2=P_1+P_2+P_3\) | \(RM_2=M_1+M_2+M_3+M_4+M_5+M_6+M_7\) | \(RO_2=M_4+M_5+M_6+M_7\) | \(M_2=RM_2-RO_2\) |
3.With seismic load_Empty case | \(H_3=P_6-P6+P_7-P_7+P_8\) | \(V_3=P_1\) | \(RM_3=M_1+M_7\) | \(RO_3=M_7+M_8\) | \(M_3=RM_3-RO_3\) |
4.With seismic load_Full case | \(H_4=P_4-P_4+P_5-P_5+P_6-P6+P_7-P_7+P_8\) | \(V_4=P_1+P_2+P_3\) | \(RM_4=M_1+M_2+M_3+M_4+M_5+M_6+M_7\) | \(RO_4=M_4+M_5+M_6+M_7+M_8\) | \(M_4=RM_2-RO_2\) |
Depth of water, \(h_{wt}\)
Where, \(h_{WT}\) = Ground water table depth during saturated condition
At walls
Width of wall where uplift acts
Uplift force at walls
Centroid at one side
Centroid at other side
Uplift at base slab
Centroid