
Corbel design

The basic principle of the design is "strut-and-tie" method similar to truss.

The requirement of the corbel is the ratio of $r = a_v/d$. The ratio shall be less than 2. Where d = effective overall depth (Ds minus effective cover). However, ratio $r = \frac{a_v}{d} \le 0.6$ in any case.

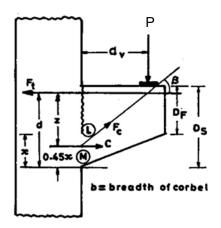
Again, effective overall depth shall be such that $\tau_m = \tau_c * \left(\frac{2d}{a_v}\right)$ where τ_c = design shear strength of the concrete, depends on the grade of concrete and shall not be greater than $0.8 \sqrt{f_{ck}}$ or 5 N/mm²

The dimensioning of the bracket shall be such that bearing pressure on concrete shall be

- i. Bearing with no padding material $0.4 f_{ck}$.
- ii. Bearing in cement mortar $0.6f_{ck}$ (Bedded bearing)
- iii. Bearing on steel plate cast into member $0.8 f_{ck}$.
- iv. Flexible pads $0.5f_{ck}$.

Check for the bearing area

$$\sigma_b = 0.8 f_{ck}$$


Bearing area

$$A_b = \frac{P * 1000}{\sigma_b}$$

And length of bearing plate

$$l_b = \frac{A_b}{b}$$

Where b = width of the corbel

Using strut-and-tie method

$$P = F_c \sin(\beta)$$

And $Sin(\beta) = \frac{z}{\sqrt{a_{\nu}^2 + z^2}}$ and therefore

$$F_c = P * \frac{\sqrt{a_v^2 + z^2}}{z}$$

Similarly,

$$F_t = F_c * \cos(\beta)$$
$$F_t = P * \frac{a_v}{z}$$

Where
$$z = (d - .45x)$$
 and hence $x = \frac{d-z}{0.45}$

Calculation of k

$$k = \frac{P * 1000}{0.87 f_{ck} b d}$$

* d

And therefore $z = \frac{\left(\frac{r}{r+k} + \sqrt{\left(\frac{r}{r+k}\right)^2 - 4*\left(\frac{k}{r+k}\right)\left(\frac{a}{a}\right)^2}\right)}{2}$

Reinforcement design

Calculation of main steel

1. Calculation of strain at the steel

$$\varepsilon_s = \varepsilon_c * \frac{d-x}{x}$$

And $\varepsilon_c = 0.0035$

$$f_s = \varepsilon_s E_s$$

If $f_s > 0.87 f_y$ then $f_s = 0.87 f_y$ otherwise $f_s = \varepsilon_s E_s$ where $E_s = 2x10^5$ N/mm² (Young's modulus of steel). For ε_s follow the stress-strain curve of reinforcement (Fig.23 of IS 456:2000 or Table A of SP16)

Area of main steel

$$A_{st} = \frac{F_t}{f_s}$$

Check for minimum reinforcement

$$A_{min} = 0.4\% of bd$$

Horizontal shear reinforcement shall be

$$A_{su} = \frac{A_{st}}{2}$$

Corbels in precast construction

Design	of	corbel	as	per	IS 4	56

Project: Sankhuwa Hydropower Project	Design				Date:	2/1/2023	
Prepared by:		Checked by:			Approved b	oy:	
INPUT	Symbol	Value	Unit	OUTPUT			
Design parameters					Size of corbe	əl	
Grade of Concrete		M25		Width		1400	mm
Characteristic Strength of Concrete	f _{ck}	25	N/mm ²	Depth At bracket		1000	mm
Grade of Steel for main bar	fy		N/mm ²	At end		500	mm
Grade of steel for shear reinforcement	fs	250	N/mm ²	Reinforcement			
Types of bars		Deformed		Main bar		Dia, mm	Nos
Clear Cover	d	40	mm			25	
Modulus of Elasticity of Steel	E _s	200000	N/mm ²	Shear bar	Dia,mm	Legs	Spacing,
					12	4	
Distance of load from support DIMENSIONING OF CORBEL Width of corbel	a _v	300	mm		300 1109	kN	
			mm				
Length of bearing pad			mm mm				
Length of bearing pad Depth of bracket at support			mm				
		40 1000	mm				500
Depth of bracket at support		40 1000	mm mm				
Depth of bracket at support Depth of corbel at far end		40 1000	mm mm mm				
Depth of bracket at support Depth of corbel at far end Check for depth		40 1000 500	mm mm mm				
Depth of bracket at support Depth of corbel at far end Check for depth At bracket		40 1000 500 1000.0	mm mm mm mm				
Depth of bracket at support Depth of corbel at far end Check for depth At bracket Far end		40 1000 500 1000.0 500.0	mm mm mm mm				
Depth of bracket at support Depth of corbel at far end Check for depth At bracket Far end Check for strut ratio av/d		40 1000 500 1000.0 500.0	mm mm mm mm				

REINFORCEMENT DESIGN	Main reinforcement	Shear reinforcement	
Area of bar	5376.00	2688.00	mm ²
Diameter	25	12	mm
Number of legs for shear bar		4	Nos
Number/Spacing	11	160.0	Nos/mm
Area of bar provided	5399.61		
Percentage of bar	0.41		%
Shear capacity of corbel		5043.28	kN
Check for shear capacity		ОК	